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In this work, inspired by the Archer-Mouy-Selmi approach [2], we present two methodologies for scoring

the stress test scenarios used by CCPs for sizing their Default Funds. These methodologies can be used by

risk managers to compare different sets of scenarios and could be particularly useful when evaluating the

relevance of adding new scenarios to a pre-existing set.

1. Comparison of sets of Hypothetical stress scenarios

After the financial crisis of 2008, the topic of stress testing got more and more attention from the financial

infrastructures environment, specifically from Central Clearing Counterparties (CCPs). Both the PFMI-

IOSCO [7] and EMIR regulations [6], [4] require CCPs to specify extreme but plausible scenarios for the

sizing of their default funds. Moreover the EMIR regulation requires a review of the same stress scenarios

(at least annually according to Article 31 of EMIR RTS [4] and according to the key explanations of Principles

4, 5, and 7 of PFMI [7]). As such a risk manager may face the conundrum of assessing the benefits of adding

or changing sets of scenarios. In this work we provide two methodologies giving a quantitative assessment

of the advantages or disadvantages of the new set of scenarios.

1.1 Plausible Hypothetical Scenarios

A hypothetical scenario is, as the name suggests, a stylized scenario designed in order to capture a tail risk.

Hypothetical stress scenarios can be designed starting from risk manager views, as for example a parallel

shift of all yield curves for fixed income products, or using as a base a scenario obtained via quantitative

methods, coming from the fit of a distribution, or a PCA.

By construction, the hypothetical scenarios do not refer directly to the history. So, it is a good indicator

of the scenarios quality to estimate their plausibility. Moreover, the size of the hypothetical scenarios are

generally calibrated separately for each risk factor, so that the plausibility of the joint scenarios does not

have the same confidence level as the one dimentional quantile level. The plausibility can be estimated, for

instance, by evaluating the log-likelihood of the hypothetical scenarios, using a joint-distribution calibrated

on the risk factors. A joint Student distribution can be calibrated on the historical data of the risk factors,

then used to estimate the likelihood of the scenario.

The problem of the design of extreme but plausible scenarios has been tackled in the literature, for example

by Thomas Breuer and co-authors in [3]. They look for the scenario that gives the worst loss, under a

plausibility constraint (likelihood less than a cap). While this approach is valid for portfolio management,

it is not well suited for the Stress Testing context of CCPs. In their second paper [5], the authors consider a

dual problem whose solution does not depend on additional dimensionality of the problem and which closely

resembles the problems faced by a risk manager at a CCP. This approach is made even more explicit by

Q.Archer, P.Mouy and M.Selmi (LCH), who proposed (cf. [2]) a framework for the design of extreme but

plausible scenarios. Their methodology considers a linear portfolio P , so that the P&Ls from risk factor

returns s is simply P ts, and assumes a calibrated historical distribution of the risk factors, with density f .

The approach can be formalized by the following maximum likelihood problem:

max
P ts≤q

fθ(s) (1)
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where

� s is the vector of the risk factors returns.

� P is the portfolio positions.

� fθ is the density function of the joint-distribution of all the risk factor returns s.

� q is a cap constraint on the portfolio loss.

For instance a heavy-tail distribution, like a T- Student law can be calibrated on the risk factors returns. q

can be chosen as the α-quantile of the distribution of the portfolio loss P ts. For example, if s is a Gaussian

vector, then P ts is Gaussian so that q can be chosen as a (one-dimensional) Gaussian quantile.

This methodology has the advantage of yielding extreme scenarios, with a loss cap, so that we are ensured

to have meaningful scenarios. Moreover, if the distribution is chosen to be a standard elliptic (Student or

Gaussian, with correlation Σ, null average and marginal standard deviation 1), then the problem (1) admits

a simple closed formula solution:

S∗(P ) = q
ΣP
tPΣP

. (2)

As pointed out in [2] and [5] another advantage of this methodology is the fact that, at least in an elliptical

setting, the solution of (1) is not dependent on the presence of additional risk factors not appearing in the

portfolio, while the primal problem considered in [3] gives losses dependent on the introduction of risk factors

unrelated to the portfolio.

1.2 The score functions

We apply now the ideas from [2] to the comparison of sets of stress scenarios.

We start by considering a single linear portfolio P (such that the P&L associated to the risk factor return s

is tPs) and a set of stress scenarios S := {S0, . . . , Sn} for the risk factor returns s.

We can thus calculate the stress loss associated to the portfolio P as:

l(P ) := min
0≤i≤n

tPSi ,

we then select the scenario Ŝ(P ) among S that drive l(P ). If several drivers are found, we select the driver

that maximize the density function (another criterion could be applied, such as minimizing the Mahalanobis

distance tŜ(P )Σ−1Ŝ(P ) among the candidate drivers).

We then compute the scenario S∗(P ) solving

sup
S ; tPS≤tPŜ

fθ(S) , (3)

that is to say the most plausible scenario generating a loss equal (or greater) to the worst loss obtained with

the stress scenarios. Equivalently, the two scenarios Ŝ(P ) and S∗(P ) generate the same loss l(P ) but S∗(P )

is the most plausible with respect to the distribution assumption.
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We finally introduce the two score functions. The first score function measures the quality of the ratio loss

to plausibility of Ŝ(P ), and is given by

φS(P ) :=
fθ

(
Ŝ(P )

)
fθ (S∗(P ))

∈ ]0, 1] (4)

The higher the score, the better it is, as a high φ indicates that the stress scenarios contained in the set S
are close, in a plausibility sense, to the most likely scenario inducing the same level of losses for the portfolio.

The second score is a geometrical criterion, measuring to what extent a driver is in the same direction as

the optimal scenario.

ψS(P ) :=
〈Ŝ(P ), S∗(P )〉∥∥∥Ŝ(P )

∥∥∥ ‖S∗(P )‖
∈ ]−1, 1] (5)

Also in this case the higher the score, the better it is, as it indicates that the “risk direction” of the portfolio

is captured by the stress scenario set S.

1.3 Applying the scores to sets of scenarios

Suppose now that we have two sets of stress scenarios: S = {S0, · · · , Sn},and T = {T0, · · · , Tm}, possibly

partially overlapping, and we want to evaluate the advantages of one set with respect to the other. The

score functions we introduced in the previous section allows us to do it in the following way:

� Select a reference set of portfolios P0, . . . , PM .

� Calculate the values φS , ψS(Pi)’s and φT , ψT (Pi)’s.

� Define a final score from those values.

The choice of the final score depends on the risk manager view. In our numerical result parts we propose

two different approaches.

� Scenario approach, which is particularly meaningful when the set T is a modification of the set S.

For each stress scenario we compute the average and standard deviation of the function ψ and φ on

the set of portfolios for which the scenario is the driver. This approach allows to have a view on which

scenarios could be eventually modified, or even eliminated as being very far from optimality, either

from a plausibility or geometrical points of view.

� Portfolio approach. We compare the score functions on each portfolio. This approach allows to better

understand for which portfolios the risk is not correctly sized, and it can be used for understanding

which test portfolios are not sufficiently stressed by the current set of stress scenarios.

We point out that the proposed scores should be used more as a non rejection indicator and not as an

acceptance one, similarly to the Kupiec Test which says that an hypothesis can not be rejected, not that it

should be accepted.
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1.4 Finding the optimal scenario

For elliptical distributions, the solution of (3) can be found exactly as described in [2]. However, for the

more generic meta-elliptical distributions (introduced in [1]) this is no more the case. As these are the

distributions we will fit the risk factors returns on, we provide two possible alternatives for finding the most

plausible scenario at a given loss.

We recall that a meta-elliptical distribution fθ is a multidimensional distribution with elliptical copula. The

setting we will consider consists of a T-Student copula with T-Student marginals, and it is consequently

characterized by a parameter θ∗ containing:

� the location vector µ and scale vector σ

� the correlation matrix Σ

� the vector of marginal degrees of freedom ν

� the degrees of freedom ν̄ of the copula(denoting also in the sequel the d-dimensional constant vector

(ν̄, . . . , ν̄)).

1.4.1 Approximate solution

The first method was proposed by Mouy et al. [2] and it is based on approximating the meta-elliptical

distribution by an elliptical distribution, i.e. using the same degree of freedom for the copula and the

marginals.

We start by normalizing the distribution, via the linear transformation s̃ := (s − µ)/σ, and we get the

equivalent problem

sup
s̃;tP̃ s̃≤q̃

f̃θ∗(s̃)

where

� f̃θ∗(s̃) := fθ∗(s)

� P̃ := σP

� q̃ := tP (Ŝ − µ).

If the distribution f̃θ∗ was elliptical, the optimal scenario for the problem above would be given by (2)

S̃∗(P ) = q̃
ΣP̃
tP̃ΣP̃

,

Transporting it back to the original problem, one has:

S∗(P ) := µ+ σ

(
q̃

ΣP̃
tP̃ΣP̃

)
.

As stated above, the approximated solution is obtained by approximating the meta-elliptical distribution

with an elliptical distribution, obtaining the sub-optimal scenario
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S̄(P ) := µ+ σT−1
ν ◦ Tν̄

(
q̃

ΣP̃
tP̃ΣP̃

)

where Tν(x) is the vector (Tνi(xi))1≤i≤d, Tνi being the CDF of a standard T-Student distribution with νi

degrees of freedom.

We point out that the approximation quality is strongly linked to the “almost linearity” of the function

T−1
ν ◦ Tν̄ around 0. In the case where ν̄ and ν are very different, the approximation could be poor, with

significant discrepancies both in term of optimal density value and on loss constraint violation.

1.4.2 Exact numerical solution

An exact solution can also be recovered numerically using classical optimizers. In fact the target function is

easy and fast to calculate and the constraint is linear.

Moreover, as the applications for which our methodologies are devised require the score calculation to be

done once for all or at low frequency so using a time consuming resolution method is not an issue.

Finally, to calculate a score, it is possible to restrict the relevant portfolios to involve a low number of risk

factors (e.g. spreads, involving each only 2 risk factors). The effective dimension of the exact resolution can

then be lowered and the optimization made easier.

2. Numerical experiments

We thus performed our experiments on the synthetic Yields curves provided by the European Central Bank

and downloadable at http://sdw.ecb.europa.eu/:

� AAA: synthetic curves aggregated from the AAA issuers of the EURO zone (dynamic basket).

� ALL: synthetic curves aggregated from all the issuers of the EURO zone (dynamic basket).

We used the pillars 6M, 1Y, 2Y, 3Y, 4Y, 5Y of those yield curves.

We assume the following setting:

� Reference set of portfolios: we consider spread portfolios of the form (Bi,−Bj) where:

– Bi, Bj are some Bonds with semi-annual coupons, with a time-to-maturity equal to one of the

pillars’ maturity

– β = −1 and β = −Di/Dj .

– Di, Dj are the durations of the bonds Bi and Bj .

– we obtain 2× 2×
(

12×13
2

)
= 264 portfolios.

� Distribution assumption: a meta-t distribution on the Yield rate returns.

� Bond pricing: we approximate the P&L for a bond to be (∆Y )D where ∆Y is the Yield rate move

and D the base bond duration.

We will obtain the optimal scenarios via numerical optimization.
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2.1 Low Dimensional or Full Risk setting

Should we fit a single distribution on all the risk factor at the same time, or one on each single test portfolio?

While for Gaussian distribution this does not have an impact, in the case of meta-elliptical distributions

that we are considering, the situation is a little bit more complicated. This is because, while the marginal

distributions are fixed, the copula can vary.

From a stability point of view, our decision makes the scores dependent on the number of risk factors chosen,

as the copula is fitted on each group separately. However, we believe that these additional degrees of freedom

allow to better measure the risk and give a better understanding of the differences between sets of stress

scenarios.

2.2 The Stress Scenarios

We consider 2 sets of stress scenarios: a base and an enriched one. As the scenario generation methodology

is not the focus of this work we decided to use over-simplified and stylized sets. Moreover, this choice allows

us to better highlight the contribution of our scores, as the difference between the sets havealso a clear

interpretation.

Both the base and the enriched set are obtained starting from the first three components of a Principal

Component Analysis performed separately on the returns of the AAA and ALL curves. The vectors are

rescaled by a factor 3× σi where σi is the explained standard deviation associated and combined as follows:

� The base set S considers only combination of the same level, and with the same sign: (±nth component

AAA, ±nth component ALL), n = 1, 2, 3, for a total 6 possible stressed scenarios;

� The enriched set S ′ considers the scenarios in the base set, plus the combination given by (±nth

component AAA, ∓nth component ALL), n = 2, 3, for a total 10 possible stressed scenarios.

We plot here the three drivers of the risk scenarios for the two curves. Notice that the PCA analysis provides

three main directions that indeed qualitatively correspond to the shift, slope change and curvature change

(displaying respectively the sign patterns +, −/+ and +/−/+) often used in devising hypothetical scenarios

for rate curves.
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2.3 Result analysis

In the table below we compare the average and standard deviation for the loss to plausibility φ·(P ) and the

geometrical score ψ·(P ) aggregated at the driving scenario level, and considered as a whole (last line). The

columns Quantity indicates for how many portfolios the selected scenario produces the largest losses.

Base Scenarios Enriched Scenarios

Scenario Quantity φ mean φ std ψ mean ψ std Quantity φ mean φ std ψ mean ψ std

(+1, +1) 80 0.334 0.258 0.858 0.193 64 0.929 0.085 0.397 0.248

(-1, -1) 80 0.348 0.263 0.872 0.171 64 0.934 0.079 0.414 0.250

(+2, +2) 28 0.442 0.244 0.512 0.331 17 0.537 0.324 0.381 0.256

(-2, -2) 28 0.437 0.246 0.497 0.343 17 0.522 0.330 0.374 0.254

(+3, +3) 24 0.666 0.259 0.746 0.274 21 0.733 0.285 0.640 0.261

(-3, -3) 24 0.658 0.262 0.736 0.283 21 0.723 0.293 0.632 0.263

(+2, -2) 0 0 0 0 0 23 0.868 0.218 0.797 0.236

(-2, +2) 0 0 0 0 0 23 0.869 0.225 0.802 0.237

(+3, -3) 0 0 0 0 0 7 0.879 0.131 0.839 0.142

(-3, +3) 0 0 0 0 0 7 0.867 0.148 0.834 0.143

Total 264 0.420 0.285 0.766 0.282 264 0.530 0.301 0.833 0.243

Table 1: Comparison of the scores on the different scores obtained with the different stress scenarios sets.

We can see that the introduction of the new scenarios does not deteriorate significantly the score of the

existing scenarios (it actually improves it in some cases), and that the new scenarios have average scores

quite elevated.

It is up to the risk manager to decide if, according to his/her expertise, the new scenarios are acceptable or

not. Particular attention should be paid in case the scores of the new scenarios are high, but the average

score for some of the old scenarios has been lowered. Again, we would like to highlight that our scores are

not to be intended as an acceptance tool, but more as a non rejection one.

We have compared above the score functions ψ and φ at a scenario level. In the figure below we compare

the two scores at a portfolio level.

� Left graph: the functions P → φS(P ) (blue), and P → φS′(P ) (green). The two functions are plotted

with the test portfolios in the ascending order for P → φS(P ).

� Right graph: the functions P → ψS(P ) (blue), and P → ψS′(P ) (green). The two functions are

plotted with the test portfolios in the ascending order for P → ψS(P ).
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We can see that, with the exception of very few portfolios, the scores obtained by the enriched scenarios are

higher than the one obtained by the base set (when the score is the same the scenario driving the stressed

value is the same in the two sets).

2.4 Comparison of probability

One natural question is whether or not the new scenarios, even if obtaining better scores for the analyzed

portfolios, are plausible enough.

A priori some of the new scenarios may be very close or even coincide with their corresponding most plausible

scenarios, however, when compared with the scenarios previously available they may be way less plausible.

A typical example could be a rescaling of one of the existing scenarios by a factor > 1. This could induce

(for some test portfolios) bigger losses, but at the same time the stress scenarios would be less plausible.

A trade-off between scenario plausibility and losses may happen and it is up to the risk manager to analyze

it and decide if it is acceptable or not, but it can also happen that the new drivers not only generate bigger

losses but are also more probable, simply because they explore new direction with respect to the old ones

and result in a more significant position with respect to the reference portfolios.

In the figure below we present the two cases:

� Left Graph: Long one bond AAA with maturity 3Y , short one ALL with maturity 3Y . In this case

the new driver not only provides a higher loss but also has a higher probability.

� Right Graph: Long one bond ALL with maturity 6M , short one AAA with maturity 6M . In this

case the new driver there is a trade-off higher losses lower plausibility.

The dashed lines represent the level line of the distribution on the scenarios (either driver or optimal).
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The graph on the left shows the most interesting case from a risk manager point of view. The original set

of scenario did not tackle in a good way the risk associated with the specific test portfolio, as the driver

is orientated almost perpedicularly with respect to the optimal scenario. The enlarged set introduces a

scenario which is in a “good direction” respect to this specific test portfolio, providing a larger loss (≈ 2.2

times the original one) while being simultaneously many times more plausible (the density ratio between the

two driving scenarios is around 19).

The graph on the right shows a less appealing case: the enlarged set introduces a scenario which generates

bigger losses but which is, at the same time, more unlikely (even if both scores are higher in this case). The

risk manager will thus have to decide, based on his expertise, if the trade off plausibility vs. risk is acceptable

or if the new scenario (or set of scenarios) should not be taken in consideration.

3. Conclusions

In this work we have presented two methodologies which can help risk managers to compare sets of stress

scenarios and in particular to assess the benefits of the introduction of new scenarios the existing ones. The

two methodologies allow the risk manager to analyze different aspects of the stress scenarios, notably their

position and relevance for the reference sets of portfolios.

The proposed methodologies have a clear and natural meaning which allows to better understand the benefit

of one set of scenarios with respect to the other.
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